Théo Galy-Fajou

Physics/Machine Learning

- ☆ | Bärbel-Bohley-Ring 8, 13355 Berlin, GERMANY
- +49 176 286 48 061
- theo.galyfajou@gmail.com
- Born 09.10.1992 in Castres, France

Education

2017 – current	Doctorate in Machine Learning
	Technische Universität Berlin
	Supervision of Pr. Opper
	See list of publications on the next page
2012 – 2015	Master of Physics
	École Polytechnique Fédérale de Lausanne
	Specialization in Particle Physics
	Master thesis at the University of Edinburgh (UK)
2013 - 2014	Minor in Computational Science
	and Engineering
	École Polytechnique Fédérale de Lausanne
	Specialization in numerical analysis
2009 - 2012	Bachelor of Physics
	École Polytechnique Fédérale de Lausanne
	Third year spent at KTH (Stockholm, Sweden)

WORK EXPERIENCE

DEC 2017 - APR 2022

Research Assistant at Technische Universität Berlin, Berlin Research tasks on Bayesian Machine Learning. Teaching tasks for the Bachelor class "Basics and advances in Artificial Intelligence" and Master classes "Probabilistic and Bayesian Modelling", "Monte Carlo Methods", "Projects in Machine Learning", "Theoretical Understanding of Machine Learning". Supervision of Bachelor and Master thesis.

Research Intern at Humboldt Universität zu Berlin, Berlin Development of Bayesian SVMs

Developing a new Bayesian Model of SVM, both scalable and accurate, and augmenting it with multi-kernels, stochastic optimization and gaussian processes

Feb 2015 - Feb 2016

SEP 2012 - DEC 2014

JUL 2012 - SEP 2012

AUG 2016 - SEP 2017

MRI Intern at Siemens Healthcare, Lausanne

C++ Sequence Development in MRI

Introduced a navigator controlling the motion of the patient with real-time feedback and synchronisation on a widely used MRI sequence. A second navigator was then introduced and processed to measure the motion and correct the coordinate system

Teaching Assistant at EPFL, Lausanne and University of Edinburgh

General Physics

Guided groups of 1st, 2nd year, and master students from different faculties through tutoring sessions, covered a lot of fields from mechanics to electromagnetism as well as thermodynamics and particle physics

Intern at Lancaster University, UK

Particle Physics

Treated data coming from a particle detector in Japan called ND280, part of the T2K neutrino experiment. Improved the reconstruction purity of the electronic neutrino without losing much reconstruction efficiency. Project in C++ and ROOT.

Strong Points:

- Proficient in software development
- Strong understanding of physics and statistical learning theory
- Communicate knowledge efficiently

Computer Skills

Advanced Knowledge	Julia, C++, Git, &TEX, Matlab, Linux,
	Photoshop, Illustrator
Good Knowledge	Python, R, Excel, InDesign,
	Premiere, Word
Basic Knowledge	mySQL, PHP, JavaScript,
	HTML5, CSS

Projects

SEP 2014 - FEB 2015

Master thesis in particle physics

Development of reconstruction algorithm for $e^+e^- \rightarrow t\bar{t}$ and

 $e^+e^-\to t\bar{t}$ (SUSY) events in the new linear collider project CLIC at CERN through Bayesian techniques

Feb 2014 - JUN 2014

Project in Computational Science

Simulation of a perfectly matched layer in an electromagnetic case coded in Matlab and using the discontinuous Galerkin method. I artificially created open boundaries on an EM wave simulation.

Feb 2014 - JUN 2014

Research on Long-Lived Particle in the LHCb experiment

Using generated samples I analysed the characteristics of long-lived particles, determined methods to recognize them and finally apply these algorithms on real data from LHC experiment

Communication Skills

French	Native speaker
English	Fluent (C2)
German	Good knowledge (B2)
Spanish	Good knowledge (B2)

Miscellaneous

- Strong experience in graphic and web design (Graphic Designer and Communication Manager for different university associations) learned as an autodidact.
- Various summer jobs such as a packager in a organic products trading company and detasseler.
- Passionate by Dancing (swing, street dance and others), Theater, Graphic Design, Sports, Travelling and Bacon

Publications	
--------------	--

Entr	OPY JOURNAL 21'
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation T. Galy-Fajou, V. Perrone, M. Opper	
Special edition on Approximate Bayesian Inference	
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models T. Galy-Fajou, F. Wenzel, M. Opper	
Adaptive Inducing Points Selection for Gaussian Processes	ICML 20
T. Galy-Fajou, M. Opper	
Accepted at the Continual Learning workshop	1.161
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation T. Galy-Fajou, F. Wenzel, C. Donner, M. Opper Oral presentation	UAI 19 1
	AAAI 19'
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation F. Wenzel, T. Galy-Fajou, C. Donner, M. Kloft, M. Opper	
	ECML 17'
Bayesian Nonlinear Support Vector Machines for Big Data	
F. Wenzel, M. Deutsch, M. Kloft	
Conference track paper with oral presentation	